

Multidisciplinary Analysis and Optimization

Design for Reliability and Robustness through probabilistic Methods in COMSOL Multiphysics with OptiY

The-Quan Pham¹, Holger Neubert², Alfed Kamusella²

¹ OptiY e.K. Germany

² TU Dresden, Institute of Electromechanical and Electronic Design, Germany

2nd European COMSOL Conference

November 4-6, 2008 in Hannover

Pham/Neubert/Kamusella Slide 1/14

Design Challenges

Variability, Uncertainty and Randomness

- A nominal Value of Design Parameter
- A arbitrary Stochastic Distribution

Causes

- Manufacturing Inaccuracy
- Material Property Scattering
- Environment Influences
- Process Uncertainty
- Human Factors etc.

Problems

- Rejection at Manufacturing
- Low Reliability, Bad Quality
- Customers Warranty

Industry

- Prototypes (time and cost effort)
- Design of Experiment

Pham/Neubert/Kamusella Slide 2/14

Survey of Probabilistic Methods

- Monte-Carlo-Sampling (Stochastic Simulation)
- Response Surface Methodology
- Analytical Approach (Moment Methods)

Computing Output Distributions from Input Distributions based on the Deterministic Model (Input-Output-Relationship)

Exclusive Tools for Reliability and Robustness Investigation of a Product or a Process at the early Design Stage

Monte-Carlo-Sampling

Principle (State of the art)

- Generate input distributions using random number generator
- Different types of random number generators: Plane Monte Carlo, Latin Hypercube, Sobol etc.
- Model calculation for each sample of the sample size
- Statistical evaluation of outputs after all model calculations

Advantages and Disadvantages

- Relationship between input and output is not required to deduce (black box model)
- Easy to implement and to use
- Converges very slowly at large sample size
- Thousands of model calculations required for accurate output distributions (long computing time)
- Results are stochastic and instable because of random numbers
- Not recommended for robust design optimization

0.353

Skewness

Kurtosis

0.389

2.49897

18.3542

0.424475

0.280833

Mean

Variance

Std-Deviation

0.317

0.342224

0.0258578

0.000668626

Pham/Neubert/Kamusella Slide 4/14

Response Surface Methodology

Principle (State of the art)

- Use a surrogate model (so-called meta-model) replacing the true input-output-relationship (model)
- Different meta-model types: Polynomial, Kriging, Radial Basis Function, Neural Network etc.
- Support points for meta-model using Design of Experiment: Monte Carlo Sampling, Factorial Design, Central Composite Design etc. (model calculations for each support point)
- Fit the meta-model with model calculations using Least Square Method.
- Output Distributions through a virtual sample based on the meta-model (very fast)

Advantages and Disadvantages

- High accuracy through a high-order approximation
- Fast computing time
- Results are also stochastic and instable because of random numbers
- Conditionally applicable for robust design optimization

Pham/Neubert/Kamusella Slide 5/14

Analytical Approach (Moment-Methods)

Principle (New)

- Using also meta-model replacing the true inputoutput-relationship
- Meta-model type is Polynomial (first and second order)
- Partial derivatives of model calculations are calculated for fitting of the meta-model
- Computing the statistical moments of output distributions from moments of input distributions
- Fitting output distributions using well-known table of moments

Advantages and Disadvantages

- Only second-order Approximation of the metamodel is possible (sufficient in the most cases of simulation)
- Fast computing time
- Results are analytically calculated and therefore very stable
- Very applicable for robust design optimization

Pham/Neubert/Kamusella Slide 6/14

Design for Reliability and Robustness Based on the Output Distributions

Robustness Evaluation

- A good Product Quality is characterized by a small Change of Outputs due to the same Input Variability
- Robust Design evaluate the Variance of the Output Distributions:
 - A small Variance of Output = Robust Design
 - A large Variance of Output = Non-Robust Design

Reliability Analysis

- Investigate the Violation of Constraint boundaries due to Input Variability
- Calculate the Rejection at a Mass Manufacturing Process based on the Probability Density Function (PDF)
- Design Goal: minimal Rejection (better Quality)

Sensitivity Study

- Identify the important Influence Design Parameters
- Disregard insignificant Design Parameters
- Investigate Interactions between Input Parameters

Thin Film Resonator as MEMS-Example

Structure

- A Shuttle
- 4 straight Cantilevers fixed outer
- Residual Stress

Failure Mechanism

- Problem-specific
- Characterized through the first resonant Frequency (f >18 kHz)

Design Problems (MEMS-Typical)

- The scattering of the design and process parameters is relatively large, compared to the dimensions of the system
- The functionality is highly influenced by the tolerances
- The materials is poorly characterized

Deterministic Simulation in COMSOL Multiphysics First Resonant Frequency = 19 kHz

Pham/Neubert/Kamusella Slide 8/14

Design Parameters of Thin Film Resonator

Design Parameter	Nominal Value	Tolerance Value	Distribution
Young's modulus E (GPa)	155	15.5	Uniform
Density rho (kg/m ³)	2330	200	Uniform
Residual stress sigma (MPa)	50	5	Uniform
Deposition Temperature T1 (K)	678.15	200	Uniform
Shuttle Length Ls (µm)	250	0.5	Normal
Shuttle Width Ws (µm)	120	0.5	Normal
Cantilevers Length Lc (µm)	200	0.5	Normal
Cantilevers Width Wc (µm)	2	0.5	Normal

Multidisciplinary Analysis and Optimization

Coupling: OptiY - COMSOL Multiphysics

Pham/Neubert/Kamusella Slide 10/14

Compare: Response Surface vs. Moment Method

- Preliminary Investigation: Only linear Input-Output-Relationship between the First Resonant Frequency and the Material and Geometry Parameters
- Use the First-Order-Polynomial Meta-Model Without Interaction between inputs to obtain also a high accuracy
- 9 Deterministic Model Calculations for 8 stochastic Parameters
- Response Surface Methodology and Moment Method yield the same Results (Cummulative Distribution Function of the First Resonant Frequency)
- Demonstration for a high Accuracy and Correctness of both implemented Methods in OptiY

Probabilistic Analysis

- Inputs: 8 Distributions (Uniform and Normal)
- Output: Normal Distribution of the First Resonant Frequency
- Mean = 19 kHz
- Standard Deviation = 0.54 kHz (Robustness)
- Range between 17-20 kHz
- 3% Rejection at a Mass Manufacturing Process for the Requirement F1 > 18 kHz (Reliability)

Sensitivity Analysis

 Main Effect is the quotient of the Variance of Output Y caused by a single Input Variability Xi to the Variance caused by the Variability of all Inputs X:

 $S_{H} = Var(Y|Xi) / Var(Y|X)$

 Total Effect composes the Main Effect and the Interactions between Inputs:

 $S_T = S_H + Var(Y|Xi,Xj)/Var(Y|X)$

- For Thin Film Resonator only the Main Effect considered because of using linear Input-Output-Relationship without Interaction (First-Order Polynomial)
- 3 Important Influence Parameters on the First Resonant Frequency: Shuttle Width, Residual Stress and Material Density

Conclusions

- Variability, Uncertainty and Randomness play an important part in the Design Process for Reliability and Robustness
- Probabilistic Methods are exclusive Tools for Reliability and Robustness Investigation of a Product or a Process at the early Design Stage
- Response Surface Methodology and Moment Methods are fast and best applicable for this Process
- Demonstration on the Thin Film Resonator shows the lack of deterministic Simulation today. Probabilistic Simulation brings the virtual Components closer to Reality
- OptiY for probabilistic Simulation is easy to connect to COMSOL
 Multiphysics for deterministic Simulation using the Script Interface