

Multi-Objective Optimization and Design Exploration of Waveguide Hybrid Junction in CST Studio Suite

Kamusella / Pham Slide 1/13

Waveguide Hybrid Junction

- The S-parameter calculation of a waveguide hybrid junction
- The structure contains a coupling section with a small metallic disk and an external cavity resonator connected to the waveguides by a coupling hole.
- The definition of Sparameter symmetries enables the reduction of performed solver runs.

Simulation of the first Solution

S-parameter calculation

 The first solution contains the following parameters:

Hole Length	=	20
Hole Width	=	3
Gap	=	19
Disk Hight	=	3
Disk Radius	=	2.5

• The operating point at 8 GHz is not optimal (bad). The reflection is very high

OptiY Workflow for Optimization

The design parameters:

- 16 \leq Hole Length \leq 24
- 2.3 \leq Hole Width \leq 3.3
- 27 ≤ Gap ≤ 19
- $3.3 \leq \text{Disk Hight} \leq 2.8$
- 2.8 \leq Disk Radius \leq 1.6

The goal is to get the best operating point at 8 GHz:

- minimal Reflections S11, S21
- maximal Transmission S41

Kamusella / Pham Slide 4/13

Optimization Process

Optimization options:

- Evolutionary Algorithms
- 80 Optimization steps
- Standard step control

Kamusella / Pham Slide 5/13

The Pareto-Optimal Solutions

Conflicting goals at the 8 GHz operating point:

- Reflection S11 (Y-axis) verus Transmission S41 (X-axis)
- minimize the reflection leads to minimizing the transmission
- maximize the transmission leads to maximizing the reflection
- The solution at minimal reflection and acceptable transmission is selected as optimal for design exploration

The Ideal Optimal Solution for Design Exploration (Best-Case)

Frequency / GHz

• The solution contains the following parameters:

Hole Length	=	19.655
Hole Width	=	3.016
Gap	=	19.081
Disk Hight	=	2.994
Disk Radius	=	2.511

• The ideal operating point at 8 GHz is optimal (best case)

Kamusella / Pham Slide 7/13

OptiY Workflow for Design Exploration

DOE-Method:

Second Order Moment

All design tolerances :

- Tolerance Value = 0.6
- Normal Distribution

The goal is to explore the operating design point at 8 GHz:

Customer requirement:
e.g. reflection range only
0.1 GHz (7.95 – 8.05 GHz)

Variations of Reflection and Transmission

- The zero-reflection frequence: 7.9-8.1 GHz (specification: 7.95-8.05 GHz)
- 12.5% of all mass manufactured parts fail the customer requirement
- Worst reflection at operating point 8GHz = 0.13 (linear)
- Worst transmission at operating point 8GHz = 0.55 (linear)

Transmission at 8 GHz 0.55 – 0.76

Reflection at 8 GHz 0 - 0.13

Zero-Reflection Frequence 7.9 – 8.1 GHz

Kamusella / Pham Slide 9/13

Global Sensitivity Analysis

• The Hole geometry tolerances (Length and Width) contribute the most to the variablity of reflection and transmission. Its should be minimized to reduce the output variability

- The Disk geometry and the Gap are insignificant and can be eleminated from the model
- There are no interactions between inputs (main effect = total effect)

Local Sensitivity Analysis

- The coefficients of the Taylor-series are shown
- The value change of the Hole geometry (nominal values) cause the most value change of the transmission and the reflection (nominal values)
- There ar quadratic and interactive correlations between inputs

Response Surface

- Graphical 2D and 3D Diagrams of the Taylor-series are shown
- Approximation to the surrogate model
- Optimization with the surrogate model
- Best- and Worse-Case Simulation

The Worse-Case Simulation

The worse case solution within the tolerance space at the operating design point 8GHz:

Reflection: -12 dB Transmission: -2.4 dB

At the design parameter combination:

Hole Length	= 19.952
Hole Width	= 3.316
Gap	= 19.378
Disk Hight	= 2.698
Disk Radius	= 2.211

Kamusella / Pham Slide 13/13