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Abstract: One challenge in designing micro-

electro-mechanical systems (MEMS) is conside-

ring the variability of design parameters caused 

by manufacturing tolerances and material proper-

ties. The function of MEMSs is significantly 

influenced by this variability, which can be re-

presented in terms of statistical variables. In 

order to involve statistical design parameters into 

the design optimization process we use probabi-

listic approaches. Monte Carlo Sampling, Res-

ponse Surface, and Moment methods will be 

described.  We applied the methods to a thin-film 

resonator as an example to show how to analyze 

the influence of scattering design parameters on 

the behavior of the resonator. We used a 

COMSOL Multiphysics model, which computes 

the first resonance frequency. For performing the 

probabilistic simulation, the model is coupled to 

OptiY via a script interface.  
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1. Introduction 
 

The properties within a set of realizations of 

a technical design scatter randomly. Variability, 

or uncertainty of the design parameters are 

caused by manufacturing inaccuracy, process 

instability, environmental influences, human 

factors, etc. This aspect is considered in the 

design process by statistical concepts. Classic 

simulation and local sensitivity analysis cannot 

sufficiently predict the real system’s behavior 

caused by the variability of the design 

parameters. A probabilistic simulation, however, 

calculates the probability distributions of 

functional variables from any type of probability 

distributions of the design parameters (Figure1).  

Using a probabilistic approach, the designer 

no longer thinks of each variable to be a single 

value. Instead, each variable is assumed to be a 

probability distribution. From this point of view, 

probabilistic design predicts the flow of variabi-

lity through a system. To improve the design 

quality, the designer has to adjust the design 

aiming at reducing the flow of random variabi-

lity. Such an approach enables to predict and 

rectify  many quality problems in early design 

stages at reduced cost. 

 

 
Figure 1.  Natural variability of technical systems. 

 

2. Why design for reliability and robust-

ness of MEMS  

 

Today’s micro electromechanical systems 

(MEMS) fulfill a broad range of functions, based 

on electromechanical, chemical, optical, biolo-

gical, and thermo-fluidic effects. Examples are 

sensors in the automotive industry, surgical devi-

ces and implantable biosensors in medicine, opti-

cal switches and RF waveguides in telecommu-

nications and navigation applications. Major 

hurdles for commercialization are low reliability, 

robustness, and quality. In optimizing the design 

of a MEMS that is robust against scattering of 

material properties, design dimensions, proper-

ties of technology steps, or ambient conditions 

all that properties have to be considered with 

their distribution functions. Considering the scat-

tering of the properties is more important in 

MEMS design, compared to classic technical 

systems, because of the facts that [3, 5]: 

� The scattering of the design and process 

parameters is relatively large, compared 

to the dimensions of the system, 

� The functionality is highly influenced by 

the tolerances, 

� Many materials are poorly characterized. 

Therefore, to ensure maximum product perfor-

mance, a reliability and robustness design tool is 
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desirable which considers specified distribution 

functions of the properties. 

 

3. Probabilistic Methods  

 

For deterministic input-output relations,  pro-

babilistic methods are used to calculate the 

distributions of output variables from a given set 

of stochastic distributions of input variables.  We 

present two classes of probabilistic methods 

provided by the multidisciplinary analysis and 

optimization program OptiY [1]: Response-

Surface and Moment methods, and we compare 

them to Monte Carlo sampling. There are also a 

lot of other reliability methods such as FORM, 

SORM, mean value etc. [4]. These methods 

provide only limited information, and will not be 

dealt with in this paper.  

 

3.1 Monte Carlo sampling 

 

Monte Carlo sampling applies a random 

number generator to generate the input distri-

butions. There are several types of random 

number generators: plane Monte-Carlo, Latin-

Hypercube and Sobol. The model calculation has 

to be performed for each input sample, to obtain 

the output sample. The output distributions have 

to be statistically calculated from the output sam-

ple.  This is quite simple to arrange and does not 

put great demands on the model, not even an 

input-output-relation is required. Unfortunately, 

Monte Carlo sampling converges very slowly. 

Thousands of model calculations are required to 

obtain accurate output distributions. Results 

computed by Monte Carlo sampling are sto-

chastic and instable, because they depend on the 

specific sample set. Therefore, this method is not 

recommended for robust design optimization. 

 

3.2 Response Surface Methodology 
 

Time-consuming simulations solely provide 

point-wise information about input-output rela-

tions in the design space. To explore the entire 

design space and reduce the computational bur-

den, global approximation methods are applied. 

These approximations are also known as meta-

model or surrogate model. A metamodel replaces 

the true functional relationship with the mathe-

matical expression y(x), the so-called response 

surface, which is much easier to compute. There 

are different metamodel types: Polynomial, kri-

ging, radial basis function, neural network, etc.  

They differ in the mathematical expressions that 

describe the output variable as a function of the 

input variables. Which metamodel type should 

be applied depends on the true input-output-

relationship. We use here the polynomial 

metamodel in any order, which is easy to employ 

and able to represent robust most global input-

output-relationships for the response surface 

methodology. For example, the second order 

polynomial can be explained: 
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For the generation of the metamodel, that means 

computing the unknown factors β of the polyno-

mial, an appropriate number of sampling points 

is needed. These so-called support points can be 

selected via different design of experiment 

techniques (DoE) in order to gain maximum 

information on the characteristics of the under-

lying relationship. For each point, the time-

consuming simulation of the model is performed 

to get the true value of the response variable y.  

For the second order polynomial, n
2
/2+3n/2+1 

model calculations are required, where n is the 

number of input variables. To fit the metamodel 

with the unknown factors β to the support points, 

the least square method or so-called linear re-

gression analysis is used. 

The probability distribution of the output 

variable y can be gained using the Monte-Carlo 

sampling with a virtual sample set based on the 

approximated metamodel. The computing time 

here is negligible compared to a time-consuming 

model calculation. The results are very accurate 

using a high virtual sampling size. But they are 

still stochastic and instable, because they also 

depend from the specific virtual sample set. 

Therefore, the method is only conditionally 

applicable for a robust design optimization 

considering reliability. 

 

3.3 Moment Method 

 

The principle of the moment method also 

bases on the metamodel between input and 

output. The metamodel type here is the first 

order or second order Taylor series as polyno-

mial ansatz: 



 
To obtain the unknown factors of the Taylor 

series, the partial derivatives are computed based 

on the time-consuming model calculations. For 

each design point, these support points are 

deterministically fixed. If n is the number of 

input variables, the required number of model 

calculations for the second order moment 

method is 2n
2
 +1. Instead of Monte-Carlo sam-

pling, the k-th center moments of the output will 

here be numerically calculated based on the ap-

proximated Taylor series for the output distri-

butions: 

 
The output distributions can be fitted using the 

well-known table of the moments. State of the 

art is that an arbitrary probability distribution can 

only be fitted using four center moments. There-

fore, only second order Taylor series can be used 

for the moment method achieving accurate 

fitting of a distribution. This is a limitation of the 

moment method compared to response surface 

methodology. But the moment method is ad-

equate for most cases of simulation. The com-

puting time of this method is also very fast. The 

results are analytically calculated and therefore 

very accurate and definitely stable. This method 

allows fast robust design optimization [2]. 

 

4. COMSOL Multiphysics model of a 

Thin Film Resonator 
 

The thin film resonator consists of a shuttle 

and four straight cantilevers fixed on the outer 

sides. Almost all surface-micro-machined thin 

films are subject to residual stress. The most 

common is thermal stress, which is caused by a 

difference in the coefficients of thermal expan-

sion of the film and the substrate. Here we study 

the first resonant frequency of the resonator 

depending on the residual stress with a 3D 

COMSOL Multiphysics structural mechanics 

model.  

In order to solve the eigenfrequencies with 

the residual stress, the large-deformation analysis 

is used. In the first step, the residual stress is 

computed by a linear solver and stored. The 

second step calculates the eigenfrequencies in-

volving the stored linear solution. The simulation 

uses the nominal values of the design parameters 

given in Table 1. The result is a first resonant 

frequency of about f1=19 kHz (Figure 2). 

 
Figure 2. First resonant frequency at 19 kHz 

 

5. Probabilistic Simulation 
 

We consider now the natural variability and 

uncertainty of the resonator via probabilistic 

simulation coupling with OptiY [1]. It is 

assumed that the material properties and 

environment influences are uniformly distributed 

and all manufacturing tolerances are normally 

distributed (Table 1). The goal is to explore the 

design at the nominal point within the tolerance 

space due to variability and uncertainty. The 

failure mechanisms of MEMS depend on 

individual components and should therefore be 

defined individually. For the thin film resonator, 

the reliability and robustness is characterized by 

the first resonant frequency f1 ≥ 18 kHz. 

 

Design 

Parameter 

Nominal 

Value 

Tolerance 

Value 

Stochastic 

Distribution 

Young’s 

modulus E 

(GPa) 

155 15.5 Uniform 

Density rho 

(kg/m3) 

2330 200 Uniform 

Residual 

stress 

sigma 
(MPa) 

50 5 Uniform 

Deposition 

Temperatur

e  T1 (K) 

678.15 200 Uniform 

Shuttle 

Length Ls 

(µm) 

250 0.5 Normal 

Shuttle 

Width Ws 

(µm) 

120 0.5 Normal 

Cantilevers 

Length Lc  

200 0.5 Normal 



(µm) 

Cantilevers 

Width  Wc 

(µm) 

2 0.5 Normal 

Table 1.  Design parameters of the resonator 

 

5.1 Coupling COMSOL-OptiY 
 

To couple COMSOL Multiphysics with 

OptiY, the resonator model must be saved as 

script file (resonator.m). Then define the para-

meters in the script file und replace all adequate 

model data by these parameters. For examples: 

E    = 1.55E+11; 

rho = 2330; 

 
Figure 3. Process workflow 

 

To accerelate the simulation, all commands for 

post-processing are deleted from the script file. 

Then at the end of the script file insert a 

command to save the first resonant frequency to 

another ASCII-file (fmin.txt): 

fmin = postmin(fem,'eigfreq_smsld'); 

save fmin.txt fmin -ascii -double; 

After creating the script file, we build a process 

workflow in OptiY (Figure 3). The script file 

(resonator.m) is linked as Input-File and the 

ASCII-file (fmin.txt) as Output-File. The Extern-

Script in OptiY is to start COMSOL-simulation 

containing following codes: 

comsol batch resonator 

With this command, COMSOL will start in batch 

mode and execute the script file (resonator.m) 

completely. 

 

5.2 Simulation Results 

 

Probabilistic simulation is performed using 

several model calculation loops in COMSOL. 

The number depends on the used probabilistic 

method. For the resonator, the first order polyno-

mial ansatz without input-interaction is used due 

to the linear correlation between inputs and out-

put. Only 9 model calculations are needed for 8 

stochastic variables. The computing time is 

acceptable also for large models.  

Firstly, we compare the cumulative distri-

bution functions (CDF) of the resonant frequen-

cy obtained from response surface methodology 

and the moment method. Both methods yield the 

same results (Figure 4). That points to correct-

ness and high accuracy of all numerical methods 

implemented in OptiY. 
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Figure 4.  CDF of the resonant frequency by response 

surface and moment method 

 

We get here a normal probability distribution 

function (CDF) of the first resonant frequency 

f1. Its mean value calculated by COMSOL 

Multiphysics is 19 kHz. But the probabilistic 

analysis furnishes a variation from 17 kHz to 20 

kHz in the reality (Figure 5). Although the 

deterministic simulation shows the satisfaction 

of design requirements, its variability may 

violate the defined boundary (f1 ≥ 18 kHz). In 

our case, 3% of the resonator at a mass 

manufacturing process might fail during usage.  

 



 
Figure 5. PDF of the resonant frequency 

 

Now, the following question is arising from 

this result: Which model parameters contribute 

most to the first resonant frequency variability 

and, possibly, require additional research to 

strengthen the knowledge base, thereby reducing 

output uncertainty. This information is also 

available. The sensitivity chart shows the 

parameters of influence on the first resonant 

frequency in descending order (Figure 6). The 

variability of the width of the cantilevers, the 

residual stress, and the material density are 

significant. Other parameters do not play an 

important part and can be deleted from the final 

model. 

 

 
Figure 6. Sensitivity of the resonant frequency 

 

6. Conclusions 
 

We showed shortcomings of today’s 

deterministic simulation.  Coupling of COMSOL 

Multiphysics with OptiY enables the virtual 

components of MEMS be modeled and 

simulated closer to reality, using probabilistic 

methods. The aspects of reliability and 

robustness can be investigated in early design 

stages so that cost and time are saved. This is 

demonstrated with help of a thin film resonator 

as design example.  
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