

# **Robust Design** of a Butterfly Valve

OptiY GmbH - Germany

Pham Slide 1 www.optiy.eu



# **Butterfly Valve**





### **Design Specifications**

#### **Design Parameter Space:**

- Valve Angle = [30, 60] deg
- Valve Radius = [1, 7] mm
- Angel Tolerance = 2 deg
- Radius Tolerance = 0.1 mm

#### **Initial Nominal Parameters**

| Nesign Parameters    |         |           |            |
|----------------------|---------|-----------|------------|
| Name                 | Nominal | Tolerance | Unit       |
| Valve Angle          | 45      | 30        | deg        |
| Valve Radius         | 4       | 6         | mm         |
| Inflow rate          | 5       | 0.25      | m s^-1     |
| Sand Grain Roughness | 2e-005  | 1e-006    | m          |
| Water Density        | 997     | 50        | kg m^-3    |
| Water Molar Mass     | 18.02   | 0.9       | kg kmol^-1 |

#### **Process or Environment Parameters:**

- Inflow Rate = 5 ± 0.125 m s^-1
- Sand Grain Roughness =  $20 \pm 0.5 \mu m$
- Water Density =  $997 \pm 25$  kg m^-3
- Water Molar Mass = 18.02 ± 0.45 kg kmol ^-1

#### **Functional Requirements:**

- Outlet Mass Flow Rate = [-0.06, -0.054] m s^-1
- Outlet pressure = minimal as possible
- Valve Erosion = minimal as possible
- Wall Erosion = minimal as possible



# **Nominal CFD-Simulation**

Flow Velocity Wall Total Pressure 1.736e+005 3.285e+001 1.387e+005 1.037e+005 2.469e+001 6.881e+004 3.386e+004 -1.084e+003 1.653e+001 -3.603e+004 -7.097e+004 8.375e+000 -1.059e+005 -1.409e+005 -1.758e+005 2.184e-001 [Pa] [m s^-1]

www.optiy.eu



### Nominal CFD-Simulation



www.optiy.eu



#### Design Space: 2D Section Diagrams



www.optiy.eu



# Design Space: 3D Graphics

#### **Outlet Mass Flow**



#### Valve Erosion Density Rate



www.optiy.eu

Slide 7



### Global Sensitivity: Parameter Importance [%]



www.optiy.eu



### Global Sensitivity: Parameter Interaction [%]



www.optiy.eu



### Nominal Design Optimization



**Optimization Goal:** 

- Constraint: Outlet Mass Flow [-0.06, 0.054]
- Criteria: Maximize Outlet Pressure, Valve **Erosion and Wall Erosion**

#### Nominal Design:

- Outlet Mass Flow = -0.05404 kg s<sup>-1</sup>
- Outlet Pressure = 244 Pa
- Valve Erosion = 668 kg m^-2 s^-1
  Wall Erosion = 9212 kg m^-2 s^-
- = 9212 kg m^-2 s^-1

| 📉 Design Parameters  |         |           |            |
|----------------------|---------|-----------|------------|
| Name                 | Nominal | Tolerance | Unit       |
| Valve Angle          | 45      | 2         | deg        |
| Valve Radius         | 4.675   | 0.1       | mm         |
| Inflow rate          | 5       | 0.25      | m s^-1     |
| Sand Grain Roughness | 2e-005  | 1e-006    | m          |
| Water Density        | 997     | 50        | kg m^-3    |
| Water Molar Mass     | 18.02   | 0.9       | kg kmol^-1 |

www.optiy.eu



#### **Uncertainty Parameters and Tolerances**



www.optiy.eu



### Nominal Design: Reliability Analysis

#### -0.06 ≤ X ≤ -0.054 Failure Probability = 56,12%







### **Robust Design Optimization**

Optimization Goal for Outlet Flow Rate: Minimize Taguchi Quality Loss Function L = Cost\*(Variance + (Mean - Target)<sup>2</sup>)

- Cost = 1 Unit
- Target = -0.057 <=> [-0.06, -0.054]

| Design Parameters |                                               |                                                                                                             |  |  |
|-------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Nominal           | Tolerance                                     | Unit                                                                                                        |  |  |
| 47.6185325        | 2                                             | deg                                                                                                         |  |  |
| 4.3571066         | 0.1                                           | mm                                                                                                          |  |  |
| 5                 | 0.25                                          | m s^-1                                                                                                      |  |  |
| 2e-005            | 1e-006                                        | m                                                                                                           |  |  |
| 997               | 50                                            | kg m^-3                                                                                                     |  |  |
| 18.02             | 0.9                                           | kg kmol^-1                                                                                                  |  |  |
|                   | 47.6185325<br>4.3571066<br>5<br>2e-005<br>997 | 47.6185325      2        4.3571066      0.1        5      0.25        2e-005      1e-006        997      50 |  |  |

#### www.optiy.eu



### Robust Design: Reliability Analysis

#### -0.06 ≤ X ≤ -0.054 Failure Probability = 0,36%



www.optiy.eu



### Robust Design: Design Sensitivity



www.optiy.eu



### Conclusion

Nominal design using classical nominal simulation cannot warranty the reliability and quality of the products, because the nominal parameters are only one fix value.

Robust design is a power-full tool for design of reliable and quality product in the early design stage without any cost. It considers the uncertainty parameters as stochastic distributions.

In the case of the butterfly valve, we have got a robust design with 0.36% failure probability for the manufacturing.

**OptiY**® is the leading software platform for robust design of all engineering fields using different commercial CAD/CAE-software or in-house codes.