

OptiY 4.6

Machine Learning Framework for Big Data

World-First Universal and Accurate Model Transformation of 1D-Simulation

February 2021 - OptiY GmbH

Machine Learning: Classification (Meta-Model)

Outputs

Classification = Digital-Simulation Regression = Analog-Simulation

X2 6.36 Cluster 0 \cap Cluster 1 5.21 Cluster 2 Cluster 3 4.05 2.89 6.22 1.68 2.82 3.95 5.09 Х1

Values		
Weight [01]	1	
Туре	Classification	
Class List	-1;1;	
Approximation	Gaussian Process	
Cluster		
Cluster Method	K-Means	
Include Output	False	
Cluster Number	4	

Machine Learning: Clustering

Grouping same Objects or Data Points in a Cluster

Algorithms

- K-Mean
- Binary Tree

Applications

- Image segmentation
- Anatomy Detection
- Recommender Systems
- Prework for Regression/Classification
- etc ...

Sparse Gaussian Process + Regulation of Least Square

- Same accurate meta-model
- Select best data points / least Square coefficients for meta-model
- Fast inference for classification and regression
- Low-rank matrix approximation for big data

□ Values		
Weight [01]	1	
Туре	Regression	
Approximation	Gaussian Process	
Cluster		
Cluster Method	Non-Cluster	
Gaussian Process		
Covariance Function	Matérn Class 3/2	
Low-Rank Approximation	Low-Rank Matrix	
Approximation Rank [%]	40	
Gaussian Noise [%]	0.01	
Polynomial		
Polynomial Type	Uniform Order	
Polynomial Order	1	
Low-Rank Approximation	Full Matrix	

Accelerating Machine Learning Using GPU

User can choose CPU or GPU for accelerated training of machine learning

- Normal operations on CPU
- Fast parallel matrix operations on GPU
- Data parallelisms on GPU
- Automatic recognition of GPUs on board

OptiY supports a lot of GPUs

- Double-Precision
- Supported by Windows DirectX 11 or later
- Manufacturer: Nividea, Intel, AMD etc..

Meta-Model of both Measurement and Simulation Data

- Import first initial points from measurement or old simulation data for building the first meta-model (blue points)
- Based on the first meta-model, suggest new additional points for simulation (gray points) and start simulation
- Build better meta-model from both data points
- Fast and efficient design of experiment and meta-modeling

Uniform/Exactly Points Suggestion by adaptive Sampling

- Based on existing metamodel, suggest many points at the same time for next simulation or measurement on prototypes
- All suggested points are uniform scattered and exact located on the maxima of uncertainties of the metamodel.

Customizing Robust Design Optimization

- Easy define customized objective functions or constraints by scripting language VB.NET or C# on Script-Editor
- Access to existing meta-models of experiment based on API with statistical values: tolerance, mean, variance, sigma, cost, 1D-value
- Just-able optimization methods: Hooke-Jeeves or evolution strategies
- Multi-objective optimization possible

MetaDesignParameter(Index)	"Design Parameter" of the stochastic parameter with index (1count) or name	
MetaParameter(Index)	"Virtual Nominal" of the stochastic parameter with index (1count) or name	
MetaTolerance(Index)	"Virtual Tolerance" of the stochastic parameter with index (1count) or name	
MetaCost	The cost function based on virtual tolerances of all stochastic parameters	
MetaConstraint(Index)	"Virtual Value" of the constraint with index (1count) or name based o the mata-model	
MetaCriterion(Index)	"Virtual Value" of the criterion with index (1count) or name based o the mata-model	
MetaConstraintMean(Index)	Mean of the constraint with index (1count) or name based o the mata-model	
MetaCriterionMean(Index)	Mean of the criterion with index (1count) or name based o the mata-model	
MetaConstraintVariance(Index)	Variance of the constraint with index (1count) or name based o the mata-model	
MetaCriterionVariance(Index)	Variance of the criterion with index (1count)or name based o the mata-model	
MetaConstraintSigma(Index)	Standard-deviation of the constraint with index (1count) or name based o the mata-model	
MetaCriterionSigma(Index)	Standard-deviation of the criterion with index (1count) or name based o the mata-model	
MetaLifeTime(Index)	LifeTime of the strain withn index (1count) or name based on the meta-model	
Meta1D(Index, Type, Value)	"Virtual Value" of the 1D-variable with index (1count) or name based o the mata-model	
	Type = { 0 = last value, 1 = max.value, 2 = min. value, 3 = mean value, 4 = sum, 5 =	
	absolute sum, 6 = band, 7 = standard deviation, 8 = integral, 9 = constraint, 10 = data-fitting,	
	11 = X by Y-point, 12 = Y by X-point, 13 = X by X-leap, 14 = X by Y-leap, 15 = Y by X-	
	leap, 16 = Y by Y-leap, 17 = X tangente, 18 = Y tangente, 19 = first value, 20 = X by max.	
	Y, 21 = X by min Y	

Most Efficient Multi-Objective Optimization

🖬 Design-Table 🗖 🖻 🖾				
No	X1-Nominal	X2-Nominal	F2	F3
0	1.16026441	1.235792	0.289397299	3.02179623
1	0.168647947	0.681009417	1.0667448	0.813386798
2	0.137141932	0.705510159	0.844872177	0.83822
3	0.82446911	0.722208032	0.373756856	1.35731804
4	0.359347258	0.717857375	0.582903326	0.949300826
5	0.399718185	0.702054508	0.702094734	0.94793731
6	1.1392247	0.720750227	0.32231006	1.84899724
7	1.08969804	0.720640004	0.342505544	1.75742161
8	0.704821868	0.718033411	0.444314629	1.21403909
9	0.605456505	0.716069885	0.492285371	1.11640096

Adaptive Sampling = Loop

- First initial sampled points on design of experiment
- Build first meta-models for single objectives
- Do a multi-objective optimization on meta-models to find Pareto virtual points
- Start simulation of the original model for these new Pareto points
- Rebuild the meta-models for single objectives
- Start the next multi-objective optimization on meta-models

New General Survey: Correlation Matrix

Vector-Transfer: SimulationX/Matlab/MS Excel/Script

- Vector = Array of double
- Frequently used by dynamic simulation for signal processing
- Easy transfer between different external simulation system SimulationX/Matlab/Excel and Script inside of OptiY

General	Script Editor
1	Dim N As Integer = 100
2	Dim TStep As Double = 0.01
3	
4	Array.Resize(X_Array, N+2)
5	Array.Resize(Y_Array, N+2)
6	
7	X = -0.5
8	
9	For i As Integer = 0 To N+1
10	Y = Amplitude/(4*Math.Sqrt(2*Math.PI*0.01))*(Math.E
11	X_Array(i) = X
12	Y_Array(i) = Y
13	X = X + TStep
14	Next
15	
<	>

Model Transformation of 1D-Simulation

New Algorithms

- Fast randomized algorithms for PCA
- Regulation of least-square
- Accurate meta-model for any complex
 1D-curve of physical simulation
- Code-export in different target languages

Advantages

- Universal for any 1D-simulation
- Reliable meta-modeling
- Big data

Code-Export of Meta-Model

