

OptiY 4.7

Data-driven Modeling and Simulation based on Physics-informed Machine Learning

October 2023 - OptiY GmbH

www.optiy.eu

Hilbert Space

User-friendly Framework for Machine Learning and Modeling (Regression and Classification = Analog and Digital Simulation)

Polynomial Vector

 $\phi_d = \left\{1, x_d, x_d^2, x_d^3, \dots, x_d^n\right\}$

Dirichlet Kernel Vector

$$\phi_d = \{1 \cdot \cos(x_d) \cdot \cos(2x_d) \cdot \cos(3x_d) \cdot \dots \cdot \cos(nx_d)\}$$

User-Defined Vector

$$\phi_d = \{f_1(x_d), f_2(x_d), f_3(x_d), f_4(x_d), \dots, f_n(x_d)\}$$

$$\phi(x) = \phi_1 \bigotimes \phi_2 \bigotimes \phi_3 \dots \bigotimes \phi_d$$
$$x = \{x_1, x_2, x_3, \dots, x_d\}$$

Hilbert Space			
Uniform Space			
Covariance Function	User Defined		
Number of Features	9		
1	1		
2	cos(p1*x1)		
3	cos(p2*x2)		
4	cos(2*p1*x1)		
5	cos(2*p2*x2)		
6	cos(3*p1*x1)		
7	cos(3*p2*x2)		
8	cos(4*p1*x1)		
9	cos(4*p2*x2)		
Optimization Parameter			
Number of Parameters	2		
Parameter 1			
Name	p1		
Value	1		
Lower Boundary	0		
Upper Boundary	2		
Parameter 2			
Name	p2		
Value	1		
Lower Boundary	0		
Upper Boundary	2		
Gaussian Noise [%]	0.01		
Approximation Error [%]	0		

Linear and Nonlinear Solvers for Hilbert Space

Reproducing Kernel Hilbert Space

$$k(\mathbf{x}, \mathbf{x}') = \sum \phi(\mathbf{x}) \cdot \phi(\mathbf{x}')$$

 $L = \log|\mathbf{K}| + \mathbf{y}^T \mathbf{K}^{-1} \mathbf{y}$

Marginal Likelihood Function

Nonlinear Method (Neural Networks)

$$L = \sum_{i=1}^{m} (\phi(\mathbf{x}_i) \cdot \boldsymbol{\beta} - y_i)^2 + R$$

Loss Function L + Regularization R Nonlinear Least-Square Method

New Optimization Methods

L-BFGS Stochastic Gradient Descent Gauss-Newton

	Kernel Method	
	Max. Order	10
	Noise-Optimization	
	Optimization Method	Gradient Based
	Max. Iterations	30
Ξ	Nonlinear Method	
	Include Hilbert Space	
	Weight Optimization	
	Regularization	None
	Optimization Method	L-BFGS
	Max. Iterations	50

Physics-informed Machine Learning (PIML)

Physics-Model

- Physical laws by partial differential equations, boundary/initial conditions and constraints.
- Model validation through some measurement data possible.
- Serial implementation and long computing time.

Data-Model

- Measurement data from prototype. (huge data required)
- Physical laws not necessary.
- Machine learning (regression and classification) automatically.
- Parallel implementation and real-time computing.

Data-driven Modeling and Simulation based on PIML

- Any mix from some data and some physical components
- Parallel Implementation and real-time computing

www.optiy.eu

Case Comparison: Data vs. PIML

-	Hilbert Space				
	Uniform Space				
	Covariance Function	Matérn Class 3/2			
	Number of Features	12			
	Gaussian Noise [%]	^{0.01} Data			
	Approximation Error [%]	0			
	State Variables				
	Partial Differential Equation				
	Boundary Conditions				
	Constraints	No Physics			
	Parameters				

Hilbert Space	
Uniform Space	
Covariance Function	Matérn Class 3/2
Number of Features	12
Gaussian Noise [%]	0.01 Somo Doto
Approximation Error [%]	
State Variables	
Partial Differential Equation	
PDE	derivate(u,t)-derivate(u,x,x)=exp(-t)*(4*π*π-1)*sin(2*π*x)
Linear	
Sampling Level	Partial Differential
User Defined	
Boundary Conditions	Equation
Number of Boundaries	1
🗖 Boundary 1	
Boundary Function	u=0
Number of fixed Values	1
Fixed Parameter	x Dia La c
Value	Boundary
Sampling Level	¹⁰ Condition
User Defined	
Constraints	
Parameters	

Data-model from only some data points is inaccurate and not useable.

PIML-model from same data and some physical components is accurate and useable

www.optiy.eu

F	Hilbert Space	
	Include X-Axis	E
	Include 1D-Variables	
	Y-Nonlinearity	None
	Uniform Space	
	Covariance Eurotion	Polynomial
	Order of Feature	2
E		
	Covariance Function	Exponential
	Number of Features	12
	Gaussian Noise [%]	0.01
	Approximation Error [%]	0
	State Variables	
6	Partial Differential Equation	
	PDE	m/k*derivate(xt,t,t)+c/k*derivate(xt,t)+xt=1/l
	Linear	
	Sampling Level	10
	User Defined	
E	Boundary Conditions	
	Number of Boundaries	2
	Boundary 1	
	Initial Value	xt=0.02
	Number of fixed Values	1
	Fixed Parameter	t
	Boundary 2	
	Initial Value	derivate(xt,t)=0
	Number of fixed Values	1
	Fixed Parameter	t
	Constraints	
	Parameters	

1D-Variables X-Max

X-Integration

X-Step

0.03

Euler

0.0001

Dynamical Systems / 1D-Systems

- Combination from machine learning and numerical integration (Euler, Heun, Runga-Kutta)
- Strong nonlinear systems
- Multiphysics with different disciplinary fields (Heat, Fluid, Static, Current, Energy etc.)
- Interactions between different partial systems

Nonlinear Autoregressive Exogenous Model (NARX) for 1D-Systems

- Autoregressive components with exogenous variables
- Specific structure and architecture depending on the problem.
- 1D-modeling for strong nonlinear systems
- Data-driven discovery of partial differential equations

 $y_t = f(y_{t-1}, y_{t-2}, y_{t-3}, \dots, y_{t-m}, x_t, x_{t-1}, x_{t-2}, x_{t-3}, \dots, x_{t-n})$

www.optiy.eu

Hilbert Space

Hierarchical Matrix for Big Data

- Big matrix on CPU divided in small hierarchical matrices loadable on GPU with small memory
- Matrix computing on small GPU-memory possible
- Fast machine learning for big data

Big Matrix divided in Hierarchical Matrices on CPU

Small GPU Memory

Big Data

Hierachical Matrix

Max. Matrix Size

Automatic

32

New Graphical Presentations (DirectX 12)

Box-Plot

	X-Actuator-Position		Y-Actuator-Position		Max. Stress von Mises	
Plunger Length	3.88	3.88	10.20	10.20	16.27	16.29
Bracket High 1	0.00	0.00	0.07	0.07	0.31	0.32
Bracket High 2	6.36	6.36	13.75	13.75	1.73	1.74
Link 2 Length	24.46	24.46	48.05	48.05	47.85	47.92
Piston Length	0.00	0.00	0.05	0.05	0.41	0.41
Link 1 Length	0.00	0.00	0.07	0.07	0.34	0.34
Casing Length	56.17	56.17	0.00	0.00	0.20	0.20

Sensitivity Matrix

Parallel Chart

www.optiy.eu

2D Scatter-Plot

New Graphical Presentations (DirectX 12)

2D Surface

3D Hypervolume www.optiy.eu

Workflow Assistant

Many Small Enhancements

- User-defined sampling on the meta-model and save in data-table
- Selection of input parameters for metamodel
- String as model parameter for "Input File"
- PowerShell is the new scripting for "Extern Script"
- Debug-mode for "Output File" with the option "Show Failure"
- Differential evolution method is implemented
- Improved Hooke-Jeeves method
- User-defined start values for evolution strategies and differential evolution
- New design of experiment method "2n+1" is implemented
- Data import in "Nominal- and Stochastic-Editor" for parameter values
- Data export for correlation matrix
- Scatter-Plot can show data from different experiments as cluster