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Abstract: For an exemplary electromagnetic 

actuator used to drive a Braille printer, a design 

optimization was performed. The optimization 

involves stochastic variables and comprises 

nominal optimization, robustness analysis and 

robust design optimization. A heterogeneous 

model simulates the static and the dynamic 

behavior of the actuator and its non-linear load. 

It consists of a network model in SimulationX 

and a static magnetic FEA model in COMSOL 

Multiphysics. The network model utilizes look-

up tables of the magnetic force and the flux 

linkage computed by the FEA model. The 

optimization tool OptiY controls the design 

variables of the models during the optimization 

and the stochastic analysis. In order to reduce the 

computational effort we used response surfaces 

instead of the system model in all stochastic 

analysis and optimization steps. This allows 

Monte-Carlo simulations to be applied. The opti-

mization itself uses gradient-based algorithms. 

 

Keywords: Electromagnetic Actuator, Heteroge-

neous Modeling, Robust Design Optimization, 

RDO. 

 

1. Introduction 
 

Model based design optimization is on the 

rise in product development. Normally, the 

models used therein consider nominal values of 

the design and ambient parameters. However, 

deviations of these parameters influence function 

and reliability. They lead to rejections, functional 

deviations, and failures. Therefore, the design 

and ambient parameters have to be considered 

with their stochastic characteristics if a certain 

robustness or reliability of the system has to be 

met. We describe an optimization methodology 

that includes stochastic variables for an exem-

plary electromagnetic actuator. 

 

 

 

2. Electromagnetic Actuator Model 
 

Electromagnetic actuators are used, when 

fast actuation, medium forces and medium 

strokes are required. Although their design varies 

in a very wide range, they always consist of an 

armature, a yoke with a back iron, a working air 

gap and a parasitic guiding air gap and a coil as a 

minimum of elements (Fig. 1). The armature is 

connected to a mechanical load characterized by 

a mass to be moved and an elastic or plastic 

counterforce. Our example is a Braille printer 

with a needle which embosses the paper and a 

return spring. 

In the following, this simple design is used to 

show the modeling approach and the 

optimization steps we applied. However, more 

complicated arrangements, containing e. g. 

permanent magnets, more than one coil, or more 

sophisticated iron parts, can also be analyzed and 

optimized in the same manner. 

 

 
 

Figure 1. Braille printer with electromagnetic 

actuator; 1 back iron, 2 coil, 3 return spring, 4 

armature, 5 guiding air gap, 6 needle, 7 paper 

sheet, 8 die, 9 yoke, 10 working air gap 

 

2.1 Governing Equations  

 

Design and optimization of magnetic 

actuators is a challenging matter due to the 

bidirectional cause-effect relations between 

electric and magnetic field, nonlinear magnetic 

material behavior, and the fact that often a 

nonlinear load is driven by the actuator. Mostly, 
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requirements concerning both the static and the 

dynamic behavior have to be considered. 

The static behavior is given by Maxwell’s 

equation using the magnetic vector potential A 

[1], when the time derivatives disappear: 
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jext is the external current density,  and µ 

the conductivity and the permeability of the 

material, respectively. Based on the flux density 

B derived from the solution of Eq. 1 as 

AB  , the magnetic force F on the armature 

can be calculated by different methods, e. g. by 

integration of the Maxwell’s surface stress-tensor 

on an arbitrary surface S surrounding the 

armature, as provided by COMSOL Multiphy-

sics: 
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However, the result of this method is 

sensitive to mesh discretization and integral 

contour position. Therefore, in practical 

applications, the use of the average forces by 

several contours is adviced [2]. 

Eq. 1 also allows the flux linkage  to be 

calculated which is necessary as well as the 

magnetic force to compute the dynamic behavior 

of the actuator-load system by a network model 

(s. section 2.3): 
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The following sections describe the models 

that incorporate these equations.  

 

2.2 Static Magnetic Model 

 

The static behavior is modeled by the FEA 

method. We assumed the problem to be axially 

symmetric with currents in the angular direction 

only. We applied the emqa application mode 

provided by COMSOL Multiphysics 3.5a and 

MATLAB scripting to build the model as an 

m-file. All design parameters needed to build the 

model geometry and to be changed during the 

optimization process are loaded from an input m-

file. Similarly, the non-linear ferromagnetic 

material is involved in the form µrel(B) as a look-

up table stored in an ASCII file (Fig. 2). The sur-

rounding air is built as a semi-circle around the 

whole arrangement. Meshed by free meshing 

with normal mesh size, we obtain about 5,000 to 

10,000 DOF depending on the geometry. The 

UMFPACK direct solver was applied. 

 

 
Figure 2. µrel(B) behavior of the nonlinear 

magnetic material steel St3 
 

 
Figure 3. Static FEA model of the 

electromagnetic actuator (cutout); 1 back iron, 2 

coil, 3 air, 4 armature, 5 guiding air gap, 6 wor-

king air gap 

 

The model computes the magnetic force 

F(i, x) and the flux linkage (i, x) for a matrix 

of discrete values of the  magnetizing current 

i = i1, …, in in the coil and the position 

x = x1, …, xm of the armature. The results are 

written to ASCII files. Furthermore, the model 

calculates and stores the coil resistance and the 

volumes of the armature and of the actuator as a 

whole.  

One major obstacle is to ensure that the 

model is working properly in the whole 

parameter space, particularly regarding the 

geometry and the mesh. This is a precondition 

that must be met for the application of such 

optimization algorithms that require a valid 



result at every point in the parameter space, e. g. 

gradient-based algorithms. For this purpose, 

some logical operations check the geometry 

before the model is built. If an inconsistence 

occurs a result is outputted equivalent to a 

malfunction of the system.  

 

2.3 Heterogeneous Dynamic Model  

 

State of the art in time-efficient dynamic 

simulation of magnetic actuators is modeling 

with networks that include look-up tables 

computed from FEA models [3]. As a general 

rule, there a two options: the non-conservative 

formulation of the physical relations in a 

signalflow diagram or the conservative 

formulation in a generalized Kirchhoffian 

network [4, 5, 6]. Both approaches allow 

coupling with finite element analysis. Because 

the latter approach is a little clearer, we used it. 

Figure 4 shows the network model of the 

electromagnetic actuator of the Braille printer 

realized in SimulationX [7]. 

 

 
Figure 4. Dynamic Network model of the Braille 

printer, coil resistance R, armature mass m 

 

The system dynamics can be computed using 

the computed static behavior F(i, x) and (i, x). 

The ODE for the mechanical dynamics describes 

the dynamic behavior of the actuator with the 

load Fload,x for the one-dimensional motion along 

the coordinate x: 

   xFxiFxm xloadxmag ,, ,  . 
(4) 

The terminal voltage u consists of the Ohmic 

voltage drop iR and the induced back-emf 

(electromotive force) d/dt. This is given by 

Kirchhoff’s voltage law: 

 xiRiu ,  . 
(5) 

However, this approach neglects some 

dynamic effects, e. g. eddy currents. 

Further, dynamic FEA models have been 

published that include the ordinary differential 

equation of the motion without previous compu-

tation of static look-up tables, e. g. with moving 

meshes [8]. This allows the eddy currents to be 

included in the simulation. However, this 

approach restricts itself to simple arrangements 

with respect to the computing time.  

 

3. Optimization of the Actuator 

 

The design optimization comprises four 

steps. In the first design optimization step we 

used the static model for finding an optimized 

design of the electromagnetic actuator. In the 

second step, we optimized the dynamic behavior 

of the Braille printer system starting with the 

optimized design from the first step. The third 

step comprises a tolerance and robustness 

analysis that calculates the probability distri-

butions of system behavior variables from the 

distributions of the design parameters. This 

enables the system failure probability to be 

deduced. In the final step, a robust design of the 

system was calculated that minimizes the system 

failure propability. For arranging the data flow 

we used the OptiY tool [9].  

 

3.1 Nominal Optimization Using the Static 

Magnetic Model 

 

The optimization starts with a preliminary 

design representing a rough idea of a design that 

would fulfill the requirements. It may be found 

by an analytical or empirical approach or by a 

rough and fast pure network model. A sensitivity 

analysis shows the importance of the design 

variables on the performance. This is a crucial 

step since the importance of the design variables 

is usually dependent on the position of the design 

point in the parameter space.  

Starting with a slim actuator, a more compact 

design was found that fulfills requirements with 

regard to the magnetic force at maximum stroke, 

power consumption and overall dimensions (Fig. 

5, 6). Seven design variables (six dimensions and 

the coil current) were involved in the 

optimization using the Hooke-Jeeves algorithm.  

The optimization based on the static FEA 

model of the actuator allows only constraints and 

objectives with regard to the static behavior to be 

considered. With the aim of a system optimiza-

tion we developed a heterogeneous model of the 

system dynamics.  

 



 
Figure 5. Nominal optimization based on the 

static model, (a) slim preliminary design, (b) 

compact optimum design 

 

 
Figure 6. Nominal optimization based on the 

static model, development of the functional 

behavior relative to the optimum 

 

 

3.2 Nominal Optimization Using the 

Heterogeneous Dynamic Model  

 

The nominal optimization with regard to the 

system dynamics bases on the model described 

in Sec. 2.3. It must be remembered that the look-

up tables are valid only for the geometry they are 

computed for when they are applied in design 

optimization. Therefore, they have to be compu-

ted by the FEA model in every optimization step. 

This is rather time consuming. Hence, a good 

starting point of the process is necessary. Here, 

this point is given as the optimum of the static 

FEA model.  

 

 
 

Figure 7. Data flow for the system dynamics 

optimization 

 

 
Figure 8. Nominal optimization based on the 

dynamic system model, optimum operating cycle 

 

Figure 7 gives a schematic of the data flow 

controlled by OptiY. The optimization itself uses 

gradient-based algorithms again. It converges 

after about 500 steps. Figure 8 illustrates the 

calculated optimum operating cycle by the 

simulation of system variables over time. In our 

example, a cycle time of 1.8 ms is achieved.  

 

4. Robustness Analysis and Robust 

Optimization of the Actuator 

 

Designs found by nominal optimization, do 

not consider possible variances from nominal 

values of the system parameters, loads or 

ambient conditions. Therefore, such optimized 

designs show low resistibility and they are more 

sensitive to uncertainties. It is a main problem 

that optimization using nominal values of the 

design variables leads to non-robust solutions. 

One reason for this undesired effect is that 

designs having an optimum performance are 

typically determined by constraints.  

The principle of robust design optimization is 

shown in Figure 9. The design with the nominal 

value a of x1 leads to unacceptable values of y. 

For a more robust design, x1 is moved from a to 



b and a lower failure probability and a smaller 

scattering of the variable y is achieved as well. In 

our example, we analyzed the probability of a 

system malfunction and then performed a robust 

design optimization.  

 

 
Figure 9. Principle of robust design optimization 

(RDO) 

 

4.1 Probabilistic Analysis 

 

A robustness analysis computes the probabi-

lity density functions of the variables describing 

the system function from the density functions of 

the design, loads and ambient conditions. The 

static as well as the dynamic model, both are 

suitable to robustness analysis.  

Concerning the dynamic model, we focused 

on scattering of the supply voltage u0, and two 

design parameters, the starting point of the 

needle x0needle and a specific diameter of the 

actuator dMagnet as an example. Uniform distri-

bution of u0 and normal distribution of x0needle 

and dMagnet are assumed. In practice, it is a 

serious problem providing this information.  

Figure 10 shows the resulting density 

functions of the system function (paper 

embossed or not) and of the cycle time. It can be 

seen that the system would not work with a 

probability of about 80 % at the nominal 

optimum.  

We used Latin-Hypercube sampling (LHS) 

around the point of the nominal optimum. 

Alternatively, other DoE methods can be used. 

Response surfaces (in this case third order 

polynoms) were derived from the sampling 

results. This allows to use Monte-Carlo simu-

lations (e. g. LHS) with a large sample size 

(100,000) to calculate the density functions of 

the system behavior. These methods are provided 

by the OptiY tool. A robustness analysis also 

revealed the size of influence of the variables on 

the system behavior. 

 

 
Figure 10. Probability density functions of the 

system function and the cycle time at the 

nominal optimum; red area stands for 

malfunction  

 

 

4.2 Robust Design Optimization 

 

The aim of the robust optimization is a 

design which guarantees higher reliability and 

lower scattering of the function than that found 

in the nominal optimum. 

In order to reduce the computational effort 

we used the response surfaces instead of the 

system model. However, they are valid only in 

the parameter space they are computed for. 

Therefore, they limit the parameter space for the 

robust optimization. Figure 11 shows the proba-

bility functions at the robust design point with 

the minimum failure probability found on the 

response surfaces. As a result, the probability of 

a malfunction falls to about 7 %.  

 



 
Figure 11. Probability density functions at a 

robust design point; red area stands for 

malfunction 

 

5. Summary and Conclusions 

 

By means of a magnetic actuator of a Braille 

printer it was exemplarily shown that algorithmic 

design optimization can be performed based on a 

dynamic network model that includes look-up 

tables computed from a static FEA model. The 

look-up tables were computed in each iteration 

step of the optimization according to the change 

in the design. Starting from a preliminary design 

we obtained an optimum design for a defined set 

of requirements. The optimization algorithm can 

also handle design variables that are given in 

form of distribution functions. That enables 

finding of the robust optimum with regard to the 

manufacturing tolerances. The final design meets 

our requirements regarding system function as 

well as reliability, considering the stochastic 

deviations of design parameters and ambient 

conditions.  

The effort to merge the different simulation 

systems inside of the optimization tool OptiY is 

low. All computations were done on a quad-core 

PC running Windows. The presented 

methodology can be applied to many similar 

design optimization processes.  
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